

The Mosley Academy Concrete > Pictorial > Abstract Calculation Progression Procedure.

The concrete > pictorial > abstract method of teaching focuses on building conceptual understanding through familiar physical and visual representations, before introducing figurative ways of working.

Essentially, it is a 'do it > see it > symbolise it' way of working that all children, regardless of age or ability, are to access as an integral part of their maths education.

The following table, adapted from Pearson Educational, sets out specific year group National Curriculum Objectives, with examples of concrete, visual and abstract activities / representations. Teachers may use this resource to guide planning and to ensure children are accessing manipulatives in,,$+- x$ and \div to best facilitate children's long term conceptual understanding. Parents/Carers may also make use of this resource to support them with 'at home' maths learning.

Updated: 2022.

KEY STAGE 1

Year 1

	Concrete	Pictorial	Abstract
Year 1 Addition	Counting and adding more Children add one more person or object to a group to find one more.	Counting and adding more Children add one more cube or counter to a group to represent one more. One more than 4 is 5 .	Counting and adding more Use a number line to understand how to link counting on with finding one more. One more than 6 is 7. 7 is one more than 6. Learn to link counting on with adding more than one.

(2) | Understanding part-part-whole |
| :--- |
| relationship |
| Sort people and objects into parts and |
| understand the relationship with the whole. |

Complete a group of 10 objects and count | Use a ten frame to support understanding of |
| :--- |
| more. |
| a complete 10 for teen numbers. | ten and 3 ones equal 13 .

		.	$9+4=13$
Year 1 Subtraction	Counting back and taking away Children arrange objects and remove to find how many are left. 1 less than 6 is 5 . 6 subtract 1 is 5 .	Counting back and taking away Children draw and cross out or use counters to represent objects from a problem. There are \square children left.	Counting back and taking away Children count back to take away and use a number line or number track to support the method. $9-3=6$
	Finding a missing part, given a whole and a part Children separate a whole into parts and understand how one part can be found by	Finding a missing part, given a whole and a part Children represent a whole and a part and understand how to find the missing part by subtraction.	Finding a missing part, given a whole and a part Children use a part-whole model to support the subtraction to find a missing part.

	7 is 2 and 5 , so I take away the 2 and then the 5 .	For 13-5, I take away 3 to make 10, then take away 2 to make 8.	
Year 1 Multiplication (x1, x2, x10 table sets)	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal.	Recognising and making equal groups Children draw and represent equal and unequal groups.	Describe equal groups using words Three equal groups of 4. Four equal groups of 3 .
	Finding the total of equal groups by counting in $\mathbf{2 s}$, 1 s and 10 s	Finding the total of equal groups by counting in $1 \mathrm{~s}, 2 \mathrm{~s}$ and 10 s 100 squares and ten frames support counting in $1 \mathrm{~s}, 2 \mathrm{~s}$ and 10 s .	Finding the total of equal groups by counting in $\mathbf{2 s}$, 1 s and 10 s Use a number line to support repeated addition through counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s.

	There are 2 pens in each pack 2...4...6......10..12...14...16...		
Year 1 Division	Grouping Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups.	Grouping Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Grouping Children may relate this to counting back in steps of 2,5 or 10.
	Sharing Share a set of objects into equal parts and work out how many are in each part.	Sharing	Sharing 10 shared into 2 equal groups gives 5 in each group.

Year 2			
	Concrete	Pictorial	Abstract
Year 2 Addition			
Understanding 10s and 1s	Group objects into 10 s and 1 s .	Understand 10s and 1s equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals.

Adding 10s

Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds. There are 4 tens and 5 ones. I need to add 7 . I will use 5 to complete a 10, then add 2 more.	Complete a 10 using number bonds.	Complete a 10 using number bonds. $7=5+2$ $45+5+2=52$
Adding a 1-digit number to a 2-digit number using exchange	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.	Exchange 10 ones for 1 ten.

(20

	$5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	$\begin{aligned} & 32+10=42 \\ & 42+1=43 \\ & 32+11=43 \end{aligned}$	$17+25$
Adding two 2-digit numbers using a place value grid	Add the 1s. Then add the 10 s .		Add the 1s. Then add the 10s.

Subtracting a singledigit number bridging 10	Bridge 10 by using known bonds. 35-6 I took away 5 counters, then 1 more.	Bridge 10 by using known bonds. 35-6 First, I will subtract 5, then 1.	Bridge 10 by using known bonds. $24-6=?$ $24-4-2=$?
Subtracting a singledigit number using exchange	Exchange 1 ten for 10 ones. This may be done in or out of a place value grid.	Exchange 1 ten for 10 ones.	Exchange 1 ten for 10 ones.

			$\begin{aligned} & 26-5=21 \\ & 46-25=21 \end{aligned}$
Subtracting a 2-digit number using place value and columns	Subtract the 1 s . Then subtract the 10 s. This may be done in or out of a place value grid. $38-16=22$	Subtract the 1s. Then subtract the 10 s.	Using column subtraction, subtract the 1 s . Then subtract the 10 s.
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s .	Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the 10 s.

		Tens Ones 胃 臬	$\begin{array}{r} \mathrm{T} \\ \hline 4 \\ \hline \\ -27 \\ \hline \\ \hline \end{array}$
Year 2 Multiplication (x5, x3, x4 table sets)			
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication.	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication.

Using arrays to
represent
multiplication and
support
understanding

Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$
Learning $\times 3, \times 5$ and $\times 4$ table facts	Develop an understanding of how to unitise groups of 3,5 and 4 and learn corresponding times-table facts, building on from 1, 2, and 10 learnt in Year 1.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.	Understand how the times-tables increase and contain patterns.

12 shared equally between 2.
They get 6 each.
Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared

	They get 5 each. 15 shared equally between 3 . They get 5 each.		
Grouping equally	Understand how to make equal groups from a whole. 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements.	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3 .

Using known times-
tables to solve
divisions

20 divided by 4 is 5 .	60			$3 \times 10=30$ so $30 \div 10=3$		
	10	10				

Understanding place value to 1,000	Unitise 100s, 10s and 1 s to build 3-digit numbers.	Use equipment to represent numbers to 1,000. Use a place value grid to support the structure of numbers to 1,000 . Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount.	Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.
Adding 100s	Use known facts and unitising to add multiples of 100.	Use known facts and unitising to add multiples of 100 .	Use known facts and unitising to add multiples of 100 . Represent the addition on a number line.

	100 bricks 100 100 bricks bricks bricks $3+2=5$ 3 hundreds +2 hundreds $=5$ hundreds $300+200=500$	$3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$	Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$
3-digit number + 1s, no exchange or bridging	Use number bonds to add the 1 s .	Use number bonds to add the 1 s . Use number bonds to add the ls. $5+4=9$	Understand the link with counting on. $245+4$

	$214+4=?$ Now there are $4+4$ ones in total. $4+4=8$ $214+4=218$	$\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1s. $5+4=9$ So, $245+4=249$
3-digit number + 1s with exchange	Understand that when the 1 s sum to 10 or more, this requires an exchange of 10 ones for 1 ten. Children should explore this using unitised objects or physical apparatus.	Exchange 10 ones for 1 ten where needed. Use a place value grid to support the understanding.	Understand how to bridge by partitioning to the 1 s to make the next 10.

(10)

3-digit number + 10s, no exchange	Calculate mentally by forming the number bond for the 10 s . $234+50$ There are 3 tens and 5 tens altogether. $3+5=8$ In total there are 8 tens. $234+50=284$	Calculate mentally by forming the number bond for the 10 s . $351+30=?$ 5 tens +3 tens $=8$ tens $351+30=381$	Calculate mentally by forming the number bond for the 10s. $753+40$ I know that $5+4=9$ So, $50+40=90$ $753+40=793$
3-digit number + 10s, with exchange	Understand the exchange of 10 tens for 1 hundred. ロ	Add by exchanging 10 tens for 1 hundred. $184+20=?$	Understand how the addition relates to counting on in 10 s across 100. $184+20=?$

3-digit number + 2digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ 픞ㅍㅁ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

		allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	
3-digit number + 3digit number, no exchange	Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid. $326+541$ is represented as:	Represent the place value grid with equipment to model the stages of column addition.	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.
3-digit number + 3digit number, exchange required	Use place value equipment to enact the exchange required.	Model the stages of column addition using place value equipment on a place value grid.	Use column addition, ensuring understanding of place value at every stage of the calculation.

	There are 13 ones. I will exchange 10 ones for 1 ten.	 (98898)	$\begin{array}{r} H T O \\ \hline 1 \begin{array}{r} 2 \\ 1 \end{array} \\ +27 \\ \hline 43 \\ \hline \square \end{array}$ $\begin{array}{rrr} H & T & O \\ \hline 1 & 2 & 6 \\ +2 & 1 & 7 \\ \hline 3 & 4 & 3 \\ \hline & 1 \end{array}$ $126+217=343$ Note: Children should also study examples where exchange is required in more than one column, for example $185+318=$?
Representing addition problems, and selecting appropriate methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps.	Children understand and create bar models to represent addition problems. $275+99=?$	Use representations to support choices of appropriate methods.

	$\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$	$\begin{aligned} & 9-4=5 \\ & 319-4= \end{aligned}$	T Z l Z I 315		$\begin{aligned} & 6-4=2 \\ & 476-4=472 \end{aligned}$
3－digit number－1s， exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged． Use place value equipment．	Represen place valu $151-6=$	the requi grid． \square	red exchange on a \square g 0	Calculate mentally by using known bonds． $151-6=?$ $151-1-5=145$

3-digit number 10s, no exchange	Subtract the 10s using known bonds.$381-10=?$	Subtract the 10 s using known bonds.		Use known bonds to subtract the 10 s mentally.
		H T	0	
			0	$372-50=?$
		8 tens -1 ten $=7$ tens		So, $372-50=322$
	8 tens with 1 removed is 7 tens. $381-10=371$			
3-digit number 10s, exchange or bridging required	Use equipment to understand the exchange of 1 hundred for 10 tens.	Represent the exchange on a place value grid using equipment.		Understand the link with counting back on a number line.
		$210-20=?$		Use flexible partitioning to support the calculation.
				$235-60=?$

	вө่ จ๐ロ		$\begin{array}{rll} \hline & T & O \\ \hline 9 & 9 & 9 \\ -3 & 5 & 2 \\ \hline & & 7 \\ \hline & & \\ \hline & T & O \\ \hline 9 & 9 & 9 \\ -3 & 5 & 2 \\ \hline & 4 & 7 \\ \hline & & \\ \hline & T & O \\ \hline 9 & 9 & 9 \\ \hline & 5 & 2 \\ \hline 6 & 4 & 7 \\ \hline \end{array}$
3-digit number - up to 3-digit number, exchange required	Use equipment to enact the exchange of 1 hundred for 10 tens, and 1 ten for 10 ones.	Model the required exchange on a place value grid. $175-38=?$ I need to subtract 8 ones, so I will exchange a ten for 10 ones.	Use column subtraction to work accurately and efficiently. If the subtraction is a 3-digit number subtract a 2-digit number, children should understand how the recording relates to the place value, and so how to line up the digits correctly.

	H T O	Children should also understand how
		to exchange in calculations where there is a zero in the 10 s column.
	H T O	H TO
		$\begin{array}{r} 506 \\ -328 \\ \hline \end{array}$
Representing subtraction problems	Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison.	Children use alternative representations to check calculations and choose efficient methods.
		Children use inverse operations to check additions and subtractions.
	Team A 454 Team B $128 \longleftrightarrow$	The part-whole model supports understanding.
	Bar models can also be used to show that a part must be taken away from the whole.	I have completed this subtraction. $525-270=255$ I will check using addition.

			$\begin{array}{r} \mathrm{H} \text { T } \mathrm{O} \\ \hline 270 \\ +255 \\ \hline 5 \mathrm{y} 5 \\ \hline \end{array}$
Year 3 Multiplication (x7, x6, x8 table sets)			
Understanding equal grouping and repeated addition	Children continue to build understanding of equal groups and the relationship with repeated addition. They recognise both examples and nonexamples using objects.	Children recognise that arrays demonstrate commutativity.	Children understand the link between repeated addition and multiplication. 8 groups of 3 is 24 .

	There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	$\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	I know that $7 \times 4=28$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.
Understanding and using $\times 7, \times 6, \times 8$ tables.	Children learn the times-tables as 'groups of', but apply their knowledge of commutativity, building on $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 5$, x 10 , x11 learnt in KS1.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables.

Usplore the relationship between known
to multiply 10s, for
example
3 $\times 40$
times-tables and multiples of 10 using place
value equipment.
I can also use the $\times 3$ table to work out how
many batteries.
Make 4 groups of 3 ones.

	What is the same? What is different?	4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$	$\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$
Multiplying a 2-digit number by a 1-digit number	Understand how to link partitioning a 2-digit number with multiplying. Each person has 23 flowers. Each person has 2 tens and 3 ones. There are 3 groups of 2 tens. There are 3 groups of 3 ones.	Use place value to support how partitioning is linked with multiplying by a 2-digit number. $3 \times 24=?$ $3 \times 4=12$	Use addition to complete multiplications of 2-digit numbers by a 1-digit number. $\begin{aligned} & 4 \times 13=? \\ & 4 \times 3=12 \\ & 12+40=52 \\ & 4 \times 13=52 \end{aligned}$

	Use place value equipment to model the multiplication context. There are 3 groups of 3 ones. There are 3 groups of 2 tens.	$\begin{aligned} & 3 \times 20=60 \\ & 60+12=72 \\ & 3 \times 24=72 \end{aligned}$	
Multiplying a 2-digit number by a 1-digit number, expanded column method	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $3 \times 24=?$	Understand that multiplications may require an exchange of 1 s for 10 s , and also 10 s for 100s. $4 \times 23=?$	Children may write calculations in expanded column form, but must understand the link with place value and exchange.

		$\begin{gathered} 5 \times 3=15 \\ 5 \times 20=100 \\ 5 \times 23=115 \end{gathered}$	
Year 3 Division			
Using times-tables knowledge to divide	Use knowledge of known times-tables to calculate divisions. 24 divided into groups of 8 . There are 3 groups of 8 .	Use knowledge of known times-tables to calculate divisions. $48 \div 4=12$	Use knowledge of known times-tables to calculate divisions. I need to work out 30 shared between 5. 1 know that $6 \times 5=30$ sol know that $30 \div 5=6$. A bar model may represent the relationship between sharing and grouping.

			$32 \div 8=4$
Understanding remainders	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further. \|IIIIIIIIIII $\square \square \square \mid$ There are 13 sticks in total. There are 3 groups of 4 , with 1 remainder.	Use images to explain remainders. $22 \div 5=4$ remainder 2	Understand that the remainder is what cannot be shared equally from a set. $22 \div 5=?$ $3 \times 5=15$ $4 \times 5=20$ $5 \times 5=25 \ldots$ this is larger than 22 So, $22 \div 5=4$ remainder 2
Using known facts to divide multiples of 10	Use place value equipment to understand how to divide by unitising. Make 6 ones divided by 3. Now make 6 tens divided by 3.	Divide multiples of 10 by unitising. 12 tens shared into 3 equal groups. 4 tens in each group.	Divide multiples of 10 by a single digit using known times-tables. $180 \div 3=$? 180 is 18 tens. 18 divided by 3 is 6 . 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$

	What is the same？What is different？		
2－digit number divided by 1－digit number，no remainders	Children explore dividing 2－digit numbers by using place value equipment． $48 \div 2=?$ First divide the 10s．	Children explore which partitions support particular divisions． I need to partition 42 differently to divide by 3.	Children partition a number into 10 s and 1 s to divide where appropriate． $\begin{aligned} 60 \div 2 & =30 \\ 8 \div 2 & =4 \\ 30+4 & =34 \\ 68 \div 2 & =34 \end{aligned}$ Children partition flexibly to divide where appropriate． $\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$

	Then divide the 1 s ． \square 日旦 日 \square 日	$42=30+12$ $42 \div 3=14$	I need to partition 42 differently to divide by 3. $\begin{aligned} & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \end{aligned}$ $10+4=14$ $42 \div 3=14$
2－digit number divided by 1－digit number，with remainders	Use place value equipment to understand the concept of remainder． Make 29 from place value equipment． Share it into 2 equal groups．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines．

	\square \square There are two groups of 14 and 1 remainder．	$29 \div 2=14 \text { remainder } 1$	$\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \\ & 17 \div 5=3 \text { remainder } 2 \\ & 67 \div 5=13 \text { remainder } 2 \end{aligned}$ There are 13 children in each line and 2 children left out．
	Year 4		
	Concrete	Pictorial	Abstract
Year 4 Addition			
Understanding numbers to $\mathbf{1 0 , 0 0 0}$	Use place value equipment to understand the place value of 4 －digit numbers．	Represent numbers using place value counters once children understand the relationship between 1,000 s and 100 s．	Understand partitioning of 4－digit numbers，including numbers with digits of 0 ．

	4 thousands equal 4,000. 1 thousand is 10 hundreds.	$2,000+500+40+2=2,542$	$5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Choosing mental methods where appropriate	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000s.	Use unitising and known facts to support mental calculations. I can add the 100s mentally.	Use unitising and known facts to support mental calculations. $4,256+300=?$ $2+3=5 \quad 200+300=500$ $4,256+300=4,556$

		I can work out the total number of Yes votes using 5,762-2,899. Bar models can also represent 'find the difference' as a subtraction problem.	1,225 799 574 The parts do not add to make 1,225. I must have made a mistake.
Year 4 Multiplication (x11, x9, x12 table sets and MTC)			
Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100.	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100.	Use known facts and understanding of place value and commutativity to multiply mentally. $4 \times 7=28$

	3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	$\begin{aligned} & 3 \times 4=12 \\ & 3 \times 40=120 \\ & 3 \times 400=1,200 \end{aligned}$	$\begin{aligned} & 4 \times 70=280 \\ & 40 \times 7=280 \\ & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$
Understanding times-tables up to 12 $\times 12$ with targeted focus on $\times 11, \times 9, \times 12$ and rapid recall for MTC	Understand the special cases of multiplying by 1 and 0 . $5 \times 1=5$ $5 \times 0=0$	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \end{aligned}$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table I know that $7 \times 5=35$ so 1 know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table

		$4 \times 11=40+4$ $4 \times 12=40+8$	$3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$
Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2. $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition. $4 \times 3=12$ $4 \times 5=20$ $12+20=32$	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+448 \\ & =108 \end{aligned}$

Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\underbrace{5 \times 2}_{10 \times 3} \times 3=30$	Understand that commutativity can be used to multiply in different orders. $\begin{array}{r} 2 \times 6 \times 10=120 \\ 12 \times 10=120 \end{array}$ $\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 5}_{12 \times 10}= \\ & =120 \end{aligned}$ So, $24 \times 5=120$
Year 4 Division			

Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array. 000000 000000 000000 $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide.	Represent divisions using place value equipment.	Use known facts to divide 10s and 100s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$

8
8 ones divided into 2 equal groups
4 ones in each group
8 tens in each group
8

	$39=30+9$ $\begin{gathered} 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	3 groups of I ten $39=30+9$ $30 \div 3=10$ $9 \div 3=3$ $39 \div 3=13$	$\begin{aligned} & 100 \div 2=50 \\ & 40 \div 2=20 \\ & 6 \div 2=3 \\ & 50+20+3=73 \\ & 142 \div 2=73 \end{aligned}$
Dividing 2-digit and 3-digit numbers by a single digit, using flexible partitioning	Use place value equipment to explore why different partitions are needed. $42 \div 3=?$ I will split it into 30 and 12, so that I can divide by 3 more easily.	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7 .	Make decisions about appropriate partitioning based on the division required. $72 \div 2=36$ Understand that different partitions can be used to complete the same division.

Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared. \square \square \square	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$ $95 \div 4=23 \text { remainder } 3$
Year 5			
	Concrete	Pictorial	Abstract

	Two lengths of fencing are 0.6 m and 0.2 m . How long are they when added together? 0.6 m 0.2 m 	$0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	$\frac{6}{10}+\frac{2}{10}=\frac{8}{10}$ 6 tenths +2 tenths $=8$ tenths $0 \cdot 6+0 \cdot 2=0.8$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $$ Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. Include exchange where required, alongside an understanding of place value. Include additions where the numbers of decimal places are different. $\begin{aligned} & 3.4+0.65=? \\ & \begin{array}{l} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \\ +0 \cdot 6 \\ \hline \end{array} \end{aligned}$

Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$TTh Th H T O 00000000000 $000 \varnothing$ \qquad Now subtract the 10 s. Exchange I hundred for 10 tens. Subtract the $100 \mathrm{~s}, I, 000$ s and $10,000 \mathrm{~s}$. 	Use column subtraction methods with exchange where required. $62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations.

			I calculated 18,000 $+4,000$ mentally to check my subtraction.
Choosing efficient methods			To subtract two large numbers that are close, children find the difference by counting on. $2,002-1,995=?$ Use addition to check subtractions. I calculated 7,546-2,355=5,191. I will check using the inverse.
Subtracting decimals	Explore complements to a whole number by working in the context of length. 0 0.49 m $\mathrm{Im}-\square \mathrm{m}=\square \mathrm{m}$ $1-0.49=?$	Use a place value grid to represent the stages of column subtraction, including exchanges where required. $5 \cdot 74-2 \cdot 25=?$	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921-3.75=?$ $\left.\begin{array}{rccc}0 & \cdot & \text { Tth } & \text { Hth } \\ \hline 3 \cdot & \text { Thth } \\ - & \cdot & 2 & 1 \\ 3 & \cdot & 7 & 5\end{array}\right) 0$

	8 is a cube number.	$\begin{aligned} & 8 \times 8=64 \\ & 82=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 . 	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000 . $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10= \\ & 17,000 \end{aligned}$
Multiplying by multiples of 10, 100 and 1,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones.	Use place value equipment to represent how to multiply by multiples of 10,100 and 1,000.	Use known facts and unitising to multiply. $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,000 \\ & 5,000 \times 4=20,000 \end{aligned}$

	5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	$\begin{array}{ll} 4 \times 3=12 & 6 \times 4=24 \\ 4 \times 300=1,200 & 6 \times 400=2,400 \end{array}$					
Multiplying up to 4digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17=?$ $8 \times 10=80$ $80+56=136$ So, $8 \times 17=136$ $8 \times 7=56$	Represe equipm 100s, th	multiplication and add the 1,000s.	ns using place value 1 s , then 10 s , then	Use an area parts. $\begin{gathered} 100 \\ \cline { 2 - 3 } \\ 100 \times 5=500 \\ \hline \end{gathered}$ Use a colum any required $\begin{array}{r} 136 \\ \times \quad 6 \\ \hline 816 \\ \hline 23 \end{array}$	odel and $\frac{60}{60 \times 5=300}$ multiplicati xchanges.	n add the $\frac{3}{3 \times 5=15}$ including
Multiplying 2-digit numbers by 2-digit numbers	Partition one number into 10 s and 1s, then add the parts. $23 \times 15=?$	Use an area model and add the parts. $28 \times 15=$?			Use column multiplication, ensuring understanding of place value at each stage.		

		$0.14 \times 10=1.4$	
Year 5 Division (Inc corresponding multiplication facts)			
Understanding factors and prime numbers	Use equipment to explore the factors of a given number. $\begin{aligned} & 00000000 \\ & 00000000 \\ & 00000000 \end{aligned}$ $\begin{aligned} & 24 \div 3=8 \\ & 24 \div 8=3 \end{aligned}$ 8 and 3 are factors of 24 because they divide 24 exactly. $24 \div 5=4$ remainder 4 . 5 is not a factor of 24 because there is a remainder.	Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33 . I know that 1 is not a prime number, as it has only 1 factor.
Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4 . There are 28 in total.	Represent multiplicative relationships and explore the families of division facts.	Represent the different multiplicative relationships to solve problems requiring inverse operations.

	I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4 . There are 7 equal groups.	$\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$									$\begin{aligned} & 12 \div 3=\square \\ & 12 \div \square=3 \\ & \square \times 3=12 \\ & \square \div 3=12 \end{aligned}$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$			
Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division. 4,000 is 4 thousands. $4 \times 1,000=4,000$ So, $4,000 \div 1,000=4$	380 is 38 tens. $\begin{aligned} & 38 \times 10=380 \\ & 10 \times 38=380 \end{aligned}$ So, $380 \div 10=38$									$3,200 \div 100=?$ 3,200 is 3 thousands and 2 hundreds. $\begin{aligned} & 200 \div 100=2 \\ & 3,000 \div 100=30 \\ & 3,200 \div 100=32 \end{aligned}$ So, the digits will move two places to the right.			

Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4 . There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$
Dividing up to four digits by a single	Explore grouping using place value equipment. $268 \div 2=?$	Use place value equipment on a place value grid alongside short division. The model uses grouping.	Use short division for up to 4-digit numbers divided by a single digit.

\begin{tabular}{|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
1.5 is 1 one and 5 tenths. \\
This is equivalent to 10 tenths and 50 hundredths. \\
10 tenths divided by 10 is 1 tenth. 50 hundredths divided by 10 is 5 hundredths. \\
1.5 divided by 10 is 1 tenth and 5 hundredths.
\[
1.5 \div 10=0.15
\]
\end{tabular} \& \(8.5 \div 100=0.085\) \\
\hline Understanding the relationship between fractions and division \& \begin{tabular}{l}
Use sharing to explore the link between fractions and division. \\
1 whole shared between 3 people. Each person receives one-third.

\end{tabular} \& Use a bar model and other fraction representations to show the link between fractions and division.

$$
1 \div 3=\frac{1}{3}
$$ \& Use the link between division and fractions to calculate divisions.

$$
\begin{aligned}
& 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\
& 11 \div 4=\frac{11}{4}=2 \frac{3}{4}
\end{aligned}
$$

\hline
\end{tabular}

			$\begin{array}{ccccc} \mathrm{H} & \mathrm{~T} & 0 \cdot & \text { Tth Hth } \\ \hline \mathrm{I} & 4 & 0 & \cdot & 0 \\ \mathrm{q} \\ & 4 & \mathrm{q} \cdot & 8 & \mathrm{q} \\ \hline \mathrm{I} & 8 & \mathrm{q} \cdot & \mathrm{q} & 8 \\ \hline \end{array}$
Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is $2,911,301$. $2,411,301+500,000=2,911,301$	Use a bar model to support thinking in addition problems. $\begin{aligned} & 257,000+99,000=? \\ & \end{aligned}$ I added 100 thousands then subtracted 1 thousand. 257 thousands +100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5-2=?$	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation.

		This can be written as: $16 \times 4+16 \times 6$ $\frac{16 \times 4}{64}+\frac{16 \times 6}{96}=160$	$\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$
Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.

compare methods for multiplications	$\begin{aligned} & 5 \times 5=52=25 \\ & 5 \times 5 \times 5=53=25 \times 5=125 \end{aligned}$	Represent and compare methods using a bar model.	Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. Represent 0.3. Multiply by 10 . Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	Understand how the exchange affects decimal numbers on a place value grid. $0 \cdot 3 \times 10=3$	Use knowledge of multiplying by 10 , 100 and 1,000 to multiply by multiples of 10,100 and 1,000 . $\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \\ 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2 \cdot 5 \times 10 \times 2 \\ & =50 \end{aligned}$

Multiplying decimals \begin{tabular}{l}
Explore decimal multiplications using place

value equipment and in the context of

measures.

Represent calculations on a place value

grid.
\end{tabular}

$\sqrt{\text { reare }}$ Onson			
Unemememen			
Somen	Useatuention	\%-100 100 [[in	Unem
	景:	$\square^{-1000} 0^{\circ 0^{\circ}}$	为
			${ }^{8}$
			${ }^{\frac{102}{107}}$

(1)

	Exchange each 0.1 for ten 0.01 s .\rightarrow0 \cdot Tth Hth Thth 0 Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	 Understand how to divide using division by 10,100 and 1,000 . $12 \div 20=?$ \square \square Y $?$ $12 \div 10$	
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $\begin{array}{ll} 4 \times 2=8 & 8 \div 4=2 \\ \text { So, } 4 \times 0.2=0.8 & 0.8 \div 4=0.2 \end{array}$	Use short division to divide decimals with up to 2 decimal places. $8 \longdiv { 4 \cdot 2 4 }$ $\begin{gathered} 0 \cdot \\ 8 \longdiv { 4 \cdot 4 ^ { 2 } 4 } \end{gathered}$ $\begin{gathered} 0 \cdot 5 \\ 8 \longdiv { 4 \cdot 4 ^ { 2 } 4 } \end{gathered}$ $\begin{array}{r\|r} & 0 \cdot 5 \quad 3 \\ \hline 8 & 4 \cdot{ }^{4} 2{ }^{2} 4 \end{array}$

